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Abstract
Multilevel (ML) algorithms for eigenvalue problems are often faced with several types

of difficulties such as: the mixing of approximated eigenvectors by the solution process, the
approximation of incomplete clusters of eigenvectors, the poor representation of solution on
coarse levels and the existence of close or equal eigenvalues. Algorithms that do not treat
appropriately these difficulties usually fail, or their performance degrades when facing them.
These issues motivated the development of a robust adaptive ML algorithm which treats
these difficulties, for the calculation of a few eigenvectors and their corresponding eigenval-
ues, presented in this paper. The main techniques used in the new algorithm include: the
adaptive completion and separation of the relevant clusters on different levels, the simul-
taneous treatment of solutions within each cluster, and the robustness tests which monitor
the algorithm's efficiency and convergence. The eigenvectors' separation efficiency is based
on a new ML projection technique generalizing the Rayleigh Ritz projection, combined with
a novel technique, the backrotations. These separation techniques, when combined with an
FMG formulation, in many cases lead to algorithms of O(qN) complexity, for q eigenvectors
of size N on the finest level. Previously developed ML algorithms are less focused on the
mentioned difficulties. Moreover, algorithms which employ fine level separation techniques
are of O(q 2 N) complexity and usually do not overcome all these difficulties. Computational
examples are presented where Schr6dinger type eigenvalue problems in 2-D and 3-D, hav-
ing equal and closely clustered eigenvalues, are solved with the efficiency of the Poisson
multigrid solver. A second order approximation is obtained in O(qN) work, where the total
computational work is equivalent to only a few fine level relaxations per eigenvector.

*This research was made possible in part by funds granted to the second author through a
fellowship program sponsored by the Charles H. Revson Foundation and in part by the National
Aeronautics and Space Administration under NASA Contract No. NASI-19480 and NASI-18605
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1 Introduction

Large scale eigenvalue problems (EP) arising from physics, chemistry and engineering
often have special features which are not always exploited by eigenvalue solvers, such
as: the EP can be approximated on several levels; only few eigenvalues and eigenvec-
tors are sought. These features can be exploited naturally by multilevel (ML) solvers
as has been done successfully by several authors (see for example [3] and [12]). Such
solvers generally involve the discretization of the problem on a sequence of levels,
relaxations employed on all levels, transfers of solutions and residuals from fine to
coarse levels, interpolation of correction from coarse to fine levels, and often a fine
level eigenvector separation technique.

Multilevel methods for EP sometimes encounter difficulties which make their ro-
bustness and efficiency questionable. Often such difficulties are due to several reasons
which we classify as: (i) mixing of eigenvectors by the used procedures, (ii) incom-
pleteness of a treated cluster, (iii) incompatible fine-coarse level representation of a
cluster. Procedures such as relaxations, transfers and ML cycles can introduce or am-
plify an eigenvector in the error component of an approximated eigenvector. This we
refer as eigenvector mixing. For example, it is known that ML procedures mix Fourier
components which are the eigenvectors of many discretized differential operators. If
the eigenvectors of an iteration operator do not coincide with the eigenvectors of the
problem to be solved, then the iteration may mix the problem's eigenvectors. This dif-
ficulty occurs especially when clusters of eigenvectors with close or equal eigenvalues
are approximated. Usually it is treated by simultaneous separation techniques, e.g.,
by a Rayleigh Ritz type projection. However, if not all eigenvectors which are mixed
by the involved procedures are approximated, e.g. the clusters are not complete, then
one can expect the separations to be inaccurate and inefficient. Thus a cluster will
be called complete relative to a procedure if it contains a whole set of eigenvectors
which are mixed by the procedure. Difficulties related to incomplete clusters may be
treated by completing the clusters and processing them simultaneously. The incom-
patibilty of clusters representation on different levels is another difficulty which has to
be identified and taken care of. In particular, not all clusters can be approximated on
an arbitrarily coarse level and the eigenvalues clustering may differ on various levels.
These difficulties and their remedies suggest the following conclusions: (i) Clusters of
eigenvectors should be treated simultaneously using a separation technique like the
Rayleigh-Ritz projection, (ii) Clusters have to be completed, (III) Different clusters 'or
should be differently treated on different levels. This suggests that previously de-:
veloped algorithms may fail in some standard situations. These include nonadaptive ] '
algorithms, algorithms which treat the eigenvectors sequencially in clusters, which do 10
not complete the relevant clusters, or which do not take into account the inter-levelo
eigenvector mixing. Even in cases when such algorithms work, their efficiency may be
improved by an adaptive treatment or by coarse level separation techniques as used,/
in this work.
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This paper focuses on a more robust and efficient algorithm for the calculation of
a few eigenvalues and their corresponding eigenvectors. Its development was guided
by the above mentioned difficulties and their remedies. Beside its robustness, the
algorithm achieves a better computational complexity than previously known ML
eigenvalue algorithms which use fine level projections. The robustness of the present
approach is based on the adaptive completion and separation of the relevant clusters
on different levels; the simultaneous treatment of solutions for each cluster; and ro-
bustness tests which monitor the algorithm's convergence and efficiency. A central
efficiency feature of the algorithm presented here results from the newly developed
Generalized Rayleigh Ritz (GRR) projection and backrotation (BR), which employ
the projection on coarse levels, adaptively with the cluster involved. This reduces in
many cases the must time consuming prt of the algorithms, namely, the O(q2N) fine
level separation work, to O(qN) for q eigenvectors of size N on finest level.

These ideas are combined in an FMG algorithm which first solves the problem
on coarse levels, then interpolates the solutions to finer levels where they serve as
an initial approximation to the corresponding finer level problems. On the currently
finest level, clusters are identified and tested for completeness, completed if necessary,
and improved by ML cycles using coarser levels. The eigenvalue equations is relaxed
on each level followed by FAS transfers. Generalized Rayleigh Ritz projection and
backrotations (GRR-BR) are employed on coarse levels usually, in order to separate
eigenvectors within their clusters, and to keep the coarse level representation of the
solutions as close as possible to the fine level solutions. This is done adaptively for
different clusters on appropriate levels. On the level on which the algorithm starts,
only a part of the sought eigenvectors are approximated usually, and more eigenvectors
with their corresponding eigenvalues are added on finer levels.

In the examples presented here for the Schr6dinger eigenvalue problem in 2-D
and 3-D, two to four fine level relaxations per eigenvector were performed. Equal
eigenvalues were calculated with more than ten decimal places and accurate results
were obtained for very close eigenvalues as well. A second order approximation is
obtained by 1-FMG-V(1,1) in O(qN) work, for q eigenvectors of size N on the finest
level.

The present approach can be extended to nonlinear eigenvalue problems, an ex-
ample being presented in Costiner and Ta'asan [6].

We refer to the early works of Hackbusch [9] McCormick [17] , Bank [I] for theory
on multilevel eigenvalue solvers and first algorithms. A sequencial ML algorithm for
linear eigenvalue problems performing the projection on fine levels is presented in
Brandt McCormick and Ruge [3]. More theory and algorithms on ML EP may be
found in Hackbusch [12]. Zaslavski in [23], [24], uses an adaptive algebraic correction
scheme cycle to compute the first eigenvector and its eigenvalue for the multigroup
neutron diffusion equation. The elements of such a ML cycle, modified to the FAS
form, can be used in the algorithm presented here. Our approach differs from previous
ML approaches mainly by the following issues: emphasis on robustness, simultaneous
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cluster processing, cluster completion, ML separation by GRR and BR, treatment of
eigenvector mixing, treatment of close and equal eigenvalues. The ML projection idea
was first introduced by Ta'asan [211; backrotations were introduced in Costiner [5].
The combination of our technique with domain decomposition techniques is natural
but was not analysed yet. For some domain decomposition techniques for eigenvalue
problems see for example Bourquin and d'Hennezel [2], and Luo [14]. A review article
on single level large-scale complex eigenvalue problems, containing many references, is
Kerner [13]. For a theory on Ritz projections and on algebraic eigenvalue problems
we refer to Parlett [19], Wilkinson [22], Golub and Van Loan [8]. The single
level technique to obtain the eigenvectors by relaxations and projections is refered in
different places as subspace, simultaneous or Ritz iterations. We refer to Nikolai [18],
Rutishauser [20] and McCormick [17] for a single level algorithm and mathematical
foundations.

The paper is organized as follows. Section 2 presents the GRR ML projection, the
backrotations and the multilevel cycle. Section 3 presents and discusses the adaptive
techniques such as the robustness tests, the cluster completion, and the adaptive
FMG. Section 4 presents computational examples.

2 Multilevel Projection Techniques

One of the key elements of our algorithm is the ML projection used to separate
eigenvectors corresponding to closely clustered and equal eigenvalues. To motivate
the new projection method consider a fine level problem

AhUh--UhA =0 (2.1)

where A = diag(A1,...,Aq) contains on diagonal the q sought eigenvalues corre-
sponding to the desired eigenvectors which are the columns of Uh. Assume that Uh
consists of linearly independent combinations of eigenvectors belonging to the sought
subspace. In this case, a Rayleigh-Ritz (RR) projection provides a A and a q x q
invertible matrix E such that A and Uh = UhE are solutions of (2.1). The FAS coarse
level equation after performing the projection on the fine level becomes

A 2hU2hE - U2hEA = T h E (2.2)

where T~hh = A 2hlJIhUh - J1"'AhUh is the usual FAS right hand side. The form of
the coarse level solution U2hE = h2hUUhE suggests that one may obtain E and A on
the coarse level from 2.2. This can be done by a generalized version of the (RR)
projection, presented next.
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2.1 Generalized Rayleigh Ritz Projections and Backrota-
tions

Solutions (E, A) of (2.2) may not exist if Uh is not a basis of span(UA). However,
as in the usual (RR) projection, if Uh approximates a basis of span(Uh), one finds
E and A such that the projection of the residual of (2.2) on span(U2h) is minimized,

i.e., solving a q x q generalized eigenvalue problem as:

(U2h)T(A2hU2h - Thh)E = (U 2h)TU 2hEA (2.3)

The process of solving for (E, A) given (A2h, U2h, Thh) is denoted by

(E,A) +- GRR(A2h, U2h,T~h) (2.4)

The above projection is. refered later on as generalized Rayleigh Ritz Projection
(GRR) or as multilevel ML projection when several levels are involved. The GRR
projection cannot be directly combined with the usual FAS correction Uh = Uh +
'.h(U2h - IhhUh), since it will change an exact fine level solution Uh, e.g. if E is not
the identity but rather a permutation matrix. This difficulty can be solved by using

a modified FAS correction such as

Uh = UhE + Ihh(U2hE - J4hUhE) (2.5)

Note that ( 2.5 ) would lead to O(q 2N) operations, equivalent to a fine level projection
work. Thus it is desirable to replace ( 2.5 ) with more efficient techniques. Other
difficulties may occur for degenerate subspaces when any matrix can serve as a solution

for E, thus, mixing and destroying orthogonality of fine level solutions for example.
A natural technique to fix these difficulties is introduced and used in combination

with the multilevel projection. It is refered to as backrotation because of its geo-

metrical meaning. As suggested by the above discussion, for degenerate subspaces
the backrotation should produce block diagonal submatrices in E which are close
to the identity matrix of the appropriate dimension and eliminate permutations of
eigenvectors. A backrotation step will be further denoted by

(E, A) +- BackRotation(E, A) (2.6)

A particular backrotation algorithm is:

BackRotation
Input (E, A)

1) Sort the eigenvalues of A and
permute the columns of E accordingly

2) Determine the clusters of eigenvalues of A
to be considered degenerate, and
determine the clusters to be considered nondegenerate

4



3) For each diagonal block in E
associated with a nondegenerate cluster do:
Bring to the diagonal the dominant elements of the block by
permuting the columns of E,
and correspondingly the diagonal of A.

4) Let F be a block diagonal matrix
whose diagonal blocks are the diagonal blocks of E,
corresponding to the clusters.
Replace each diagonal block which does not correspond
to a degenerate cluster by the corresponding identity matrix

5) Set E = EF-1 .
6) Change the signs of columns of E

to get positive elements on diagonal.
7) Normalize the columns of E.

Output (E, A)

2.2 Multilevel Combined Cycles

In general, not all required eigenvectors can be well approximated on an arbitrarily
coarse level. For example, fine level discretized Laplace operator eigenvectors corre-
sponding to larger eigenvalues may not be representable on coarse levels. Moreover,
the eigenvector cluster structure may differ on various levels. However, the efficient
solution of the eigenvectors corresponding to small eigenvalues may often be done
using coarse levels. A major difficulty is that solutions belonging to a cluster are
often mixed by procedures, i.e. the procedures may regard linear combinations of
solutions as a solution. This obstacle can be overcomed by simultaneously treating
all the cluster's eigenvectors and separating them on different levels.

Efficiency and convergence considerations require that the GRR projection should
be done for different clusters on different levels. Moreover, the coarsest level used to
treat a given cluster may not coincide with the level on which the GRR projection
is done. Thus, the full algorithm depends on some parameters associated with each
cluster, that determine the flow of the algorithm for that cluster. These parame-
ters are determined adaptively during the solution process (as explained in the next
section).

Following is a description of a basic ML cycle used in the adaptive algorithm
presented in the next section.

Let q' eigenvectors be approximated by j clusters on level k:

Uk= I(2.1)

where, each 1I• approximates U1, the solution of

Ak; = UA' + Y i=1,..., (2.2)



where each Uk is a matrix whose columns are eigenvectors and A' is a diagonal ma-
trix whose diagonal elements are the corresponding eigenvalues. Usually, on the finest
level, k = m, Tk = (Tk,...,Tk) = (0,...,0). Denote A = diag(A 1,...,Aj). For each
cluster U( let l1 be the level on which the GRR-BR projection is done, and l1 the
coarsest level used in the ML process for this cluster. Here it is assumed that li < l.

Denote 1p = (1I,..., li), l1 = (l1,..... ,j) and by I• a function transfer from level k to
level j. For improving a given approximation (UJ,,, A, T,,.), a multilevel cycle consist-
ing in a sequence of cycles for each cluster in turn, is:

(U,,,, A, T,,, lr, l1, q') +- CL-MLP (m, A,,,, U,,,, AlT,,,, I, l1, q1)

For i = 1,...,j do:
For k = m,... I' do:

Repeat Nk' Times:
If 1. = k then (Uk, A', Tk) +- GRR-BR(m, Ak, UA;, A', Tk, 1;,, k)
U, +-Relax (m, Ak, Uk, A', T:, k, l')

If k > lI then:
Set k = k- 1,
Uki=IJkk+l Ukil,Uki = I k -+,

f = l+(Tf+ 1 - Ak+,UL+l) + AkUk
End
For k = li,...,m do: • k vUi _Ik-Iuk)

If (k> li) Correct U' = Uk + 4-I 1 k-1Ik

Repeat Nk Times
Uk' +-Relax (m, Ak, Uk, A', Yk, k, l')C

If I, = k then (Uk,A', Tik) - GRR-BR(m,Ak,U , A',Tk,l1, k)End
End

The GRR-BR algorithm used above is the following:

(U(,A', Tk) -- GRR-BR(mn, Ak, Uk, A', T,, 1,, k)
Perform

(E, A') 4-GRR(Ak, Uk, Ti)
(E, Ai) 4-BackRotatation(E, A')

Tk'= Tk'E

Observe that in CL-MLP the clusters are treated sequentially and within each
cluster the solutions are treated simultaneously in the ML cycle. A simultaneous
cycle for several clusters is obtained by grouping the clusters into a single larger
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cluster and applying CL-MLP to it. This may be used to improve separation between
clusters. Observe that if for each cluster the GRR-BR projection is performed on
the finest level, the algorithm still requires less work than an algorithm performing
the fine level projection for all clusters simultaneously. Moreover, if mixings occur
on coarse levels, one may expect an algorithm using fine level separation to have
a poor efficiency; a coarse level separation usually improves the efficiency in such
cases. For well separated eigenvalues the projection may not be needed except at
initial coarse level stages of the FMG, later the eigenvalues determine the separation
of eigenvectors via the multilevel cycles. The same holds for well separated clusters
which do not need a simultaneous separation. This is especially useful for a larger
number of eigenvectors, belonging to well separated clusters (e.g. already for 10
eigenvectors the improvement can be noticeable). Accurate normalization, if needed,
can be performed as the last step only on the finest level.

Several parameters in this algorithm have to be specified, such as coarsest levels
l and l, and numbers of iterations. These parameters are chosen by the adaptive
algorithm discussed in next section. The choice of lp and 1, depends on cluster and
stage of the algorithm. The number of iterations Nk can be deduced for simple cases
based on Fourier or 2-level cycle analysis or in general cases, by robustness tests
performed during execution. The number of relaxations can vary with level. In the
computational tests one or two relaxations per fine level passing were performed.

sought

3 Adaptive Multilevel Algorithms

For robustness, the construction of an adaptive version of the CL-MLP is essential
since the grouping of eigenvectors into clusters, the sizes of the clusters, the coarsest
level corresponding to a given cluster are not known in advance, usually. Eigenvectors
belonging to clusters usually are mixed by different procedures. This deteriorates the
algorithms' efficiency and often prevents convergence. A typical difficulty occurs
when a procedure approximates only several eigenvectors of a cluster. Then the
nonapproximated eigenvectors usually are the dominant components of the errors
which are hard to eliminate due to mixing. This suggests to complete the clusters and
separate the solutions within clusters whenever necessary. Simultaneous tedniques
treating at a time all solutions belonging to a complete cluster, can be easier coupled
with separation techniques at different stages, thus acquiring better efficiency than
sequencial techniques which hardly avoid difficulties due to mixing.

In the adaptive algorithm, the clusters are tested for completion and completed.
The cluster completion is tested on all current finest levels and performed on several
levels since the structure of clusters can differ on different levels.

The full multilevel solver described below starts on coarse levels, and solves there
for as many eigenvectors as possible. Then it uses those as an initial approximation
for finer level solutions where more eigenvectors are added if needed.

7



Two important parts of this algorithm are the completion and addition of clusters.
The completion of a cluster is done by adding in turn a new vector and improving it
by multilevel cycles. An approximate eigenvalue is associated with this eigenvector,
by a Rayleigh quotient. If the eigenvalue is close to the cluster then the new vector
is added to the cluster. If the found eigenvalue does not belong to the cluster then
the cluster is considered complete. The convergence of the additional eigenvector is
not sought. At the end, the complete cluster is improved by several CL-MLP cycles.

The addition of a new clusters is usually done in the first stages of the algorithm
when not enough complete clusters are found. This is performed by the cluster
completion algorithm described next.

Denote by dj the current dimension of the cluster U(. The cluster completion and
cluster addition algorithms are given by:

07(jJ Ui mJ, TkJ, 1p, 1c, q') +-Complete- Cluster(j*, Uk, Aj, Tk), 1l7, V', q')

Until (Cluster-Completion-Test = TRUE) Do
Choose random 4
Until < AkO, 0 > / < 4, 4 > and residuals stabilize Do:(€,J TJ 0Oi l) --CL-MLP(k, A' Tk,0, 1l )

h n= ki.• CI c, i~nl,

Separate € from (Uk,..., Uk)
Set A =< AkO,¢ > /<0,0¢>

Uk - (Uk 1 ))
A' +- diag(A, A)
q'= q'+ 1, dj =d,+l

End
Perform (UJj,Aj, Tk, 1j, 1l,di) +-CL-MLP(k, Uj, A', Tkj, Ij, 1, dj)

(J, Uk, A, Ti, 1p, l,, q') 4-Add-Cluster(j, Uk, A, Tk, 1p, l1, q')
Set j = j + 1
(j, Uk, A', T,' .1, l, q') +-Complete-Cluster(j, []k, Aj, T', 1j, V, q')
Set Uk = (Uk,...,U ), A =(A....,Aj)

The Separation of 4 from the other eigenvectors may be performed by orthogo-
nality, projection or by a ML cycle.

Another crucial part of the algorithm are the robustness-tests. Robustness tests
are techniques which find parameters to be used in a certain procedure for given
data such that the procedure will be convergent and will be as efficient as possible.
Typically, the procedure is tested over a set of data, or information from intermediate
results is used in order to reduce the work involved in testing. Next, for simplicity,
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we consider only the robustness test which provides the parameters (1p, 1,) for the
CL-MLP cycle. This ensures the proper values for the parameters 1,, 1,. in order
to get convc.':ance and the best attainable efficiency for CL-MLP. This is done by
examiniD- .or clusters the different possible values for 1, ,lp. The use of an FMG
algorithm suggests that these parameters for a given cluster will stabilize with the
refinement process. Thus, a notion of a stabilized cluster is introduced in order to
save unnecessary work in looking for new values for 1,, 1p for stabilized clusters.

A complete cluster on level L is called stabilized if it corresponds to a complete
cluster from level L- 1 or L+ 1 in the sense of the number of eigenvectors in the cluster,

the values of the eigenvalues and the eigenvectors approximation. For stabilized
cluster, corresponding to a coarser level stabilized cluster, we take the 1,, 1p values
from the corresponding coarser level cluster. For not stabilized clusters, which would
exist usually on coarse levels only, we perform a search to obtain best values for I1, 1p.
This is done by performing ML cycles with different choices of these parameters, and
choosing the ones that perform best. This is summarized in the next algorithm. Such
tests are inexpensive when performed on coarse levels, and often lead to significant

fine level work savings. Moreover, such tests are essential to ensure the algorithm's
convergence.

Convergence is always obtained since at least the single level cycle converges, being
a subspace iteration algorithm [8].

Denote by (1,, I1, in) the 1p and 'q parameters, for the level in cycle for the cluster
j, and by p(l, 13,rn) := p(CL - MLP(m,A,,,,Um, A,Tm,,P, Pq')) the convergence
rate (measured by the residual decrease) of the CL-MLP cycle for cluster j on level
m, using the parameters (1p, l,). The following algorithm updates (1p, l1) on level m:

(lp4 1, in) +- Robustness-Test (in, A,n, Um,1 A, T,, I1p, 1c, q')
For j Do:If J JA ,,,-n21 < )

then
in)= in

else
If (IA•- A.•- I c ) or if (Ai) is not approximated
then

Solve for (l1, lP, m)
ran,),,) J1(1', B , n) : 11 < Pp <in,

else
(1,J), in) = (1j,/P,m -n 1)

endif
endif

Observe that since the initial values for lP, l1 on any level are taken from the next
coarser level, the search needed in the Robustness-Test is over just a few choices of
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the parameters.
The full ML algorithm uses as building blocks the CL-MLP, Add-Cluster, Complete-

Cluster and Robustness-Test algorithms described before. It is defined as:

Adaptive-FMG(m, q, A)
Set k= 1, q'=O, *=O, l4=k, lj=k

Until (q' > q or q' > a•dimk) Perform
(j, UA., A, Tk, lP, 1c, q') +-Add-Cluster(j, Uk, A, Tk, 1p, 1c, q')
(Uk, A, Tk, 1,, 1c, q') 4-CL-MLP(k, Uk, A, Tk, 1p, 1c, q')

Until k > rn Do:
If k < 7n then:

Set k=k+1, Uk = lil 1 k-1, Tk = O
endif
If (q' > q) then:

If (Cluster-Completion-Test=TRUE then:
(1k, A, Tk, 4,, 1, q') -- CL-MLP(k, Uk, A, Tk, lp, 1, q')

Else
( k', tv,,AjI kJ l7p 1iI1i, q') +_._Complete-_Cluster(j, UkI, AJ, TkJ,13,13, q' )

(Uk, A, Tk, 1p, lc, q') +-CL-MLP(k, Uk, A, Tk, 4p, 1, q')

endif
Else

Until (q' > q or q' > a dimk) Perform
(j, U,, A, Tk, 4P, lc, q') 4-Add-Cluster(j, Uk, A, Tk, 1P, lc, q')
(Uk, A, Tk, 1p, 1, q') +-CL-MLP(k, Uk, A, Tk, 4P, lc, q')

endif

3.1 Storage and Complexity

For the Adaptive-FMG algorithm, storage is required for the q eigenvectors of size N
on the finest level, the potential and the corresponding right hand sides, on all levels,
giving an overall estimate of memory of order 0(3(N + 1)) for problems in 2-D and
3-D. The FMG work requires O(N) operations per eigenvector. The work performed
on coarsest levels should be added to these estimates. In the performed tests where
a few eigenvectors were sought, the coarse level work was usually a fraction of the
finest level work. If accurately zero scalar products are needed on finest levels then
orthonormalizations or projections may be required within the finest level degenerate
or close clustered eigenspaces. However, as can be seen in the computational ex-
amples, accurate orthogonality inside degenerate clusters may be obtained by coarse
level separation also.

In the computational examples presented here, a complexity of O(qN) is obtained.
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4 Computational Examples and Discussions

We have chosen several examples in which we focus on different aspects of the method.
The first example is of an adaptive algorithm in which we take a case of special
difficulties in terms of clustering of eigenvalues, and correspondence of these clusters
between levels. The second example shows that it is enough to treat the clusters in a
sequential manne,-, and separation has to be done within each cluster only to obtain
good convergence and accurate separation.

The third example shows that the new multilevel projection technique may be
performed on coarsest levels, even in cases with closely clustered or equal eigenvalues,
thus reducing the computational work significantly. A last example shows that the
same efficiency is obtained for problems in 3-D as for problem in 2-D.

In all examples the periodic boundary conditions Schr~dinger eigenvalue problem

(A- V)u = Au (4.1)

defined on 11 = [0, a]d (d=2 or 3) where a = 27r/10, was considered. The potentials
are chosen sich that the distribution of eigenvalue present special difficulties. A finite
difference discretization on cartesian grids is used.

Example I: Adaptive Algorithm
As an example for the adaptive algorithm we have chosen a potential which deter-

mines a distribution of eigenvalues which present special difficulties. Not only closely
clustered eigenvalues are present but also the correspondence of the clusters between
levels is not appropriate, as explained later.

The potential for this case is V(x, y) = 5+3sin(lOx) and the results are presented
in Tables 1 and 2. The first q = 12 eigenvalues were required, and have been approx-
imated using an adaptive 1-FMG-V(1,1) algorithm which uses as its coarsest level a
employs 4 x 4 coarsest grid.

The ith eigenvalue and eigenvector will be denoted next by Ai and vi. The boxes
in Table 2 show the clusters of close or equal eigenvalues (with (-) sign) found by
the algorithm (the formats are chosen to outline the equal digits). As can be seen
there the cluster structure on the different levels is not the same. Particularly, level 2
cluster structure differs from the level I cluster structure. Observe that the cluster of
6 eigenvalues on level 1 (A6 - A11), with multiplicities 1 - 4 - 1, has no correspondence
on level 2.

For demonstrating the adaptive flow of the algorithm we give a full history of one
specific run, for the potential discussed here.

The particular algorithm described in section 3 is used.
The algorithm started on level 1 adding eigenvectors until the cluster containing

A12 was completed. Note that A16, the last eigenvector that was found belongs to the
next cluster, confirming the completeness of the last sought cluster. Observe that
on level 1, A1 2 belongs to a cluster consisting of two degenerate subspaces, each of

11



dimension 2, and the eigenvalues corresponding to these degenerate subspaces are
close to within O(10-") relative difference.

The relevant eigenvectors vi,... , v15 were interpolated to level 2 where they pro-
vided initial guesses for the level 2 algorithm. Here the completion of clusters restarted
but this time working with the cluster structure from level 1 and using two level cycles.
A test was done for the efficiency of a simultaneous cycle with fine level projection.
The cycle was performed to provide first approximations of the level 2 eigenvalues.
The cluster structure and eigenvalues obtained were compared with the ones of level
1. Since the agreement was not satisfactory, except for vi, a cluster completion algo-
rithm started with v2 . The completion continued until the complete cluster containing
the last sought eigenvector was obtained, (e.g. for level 2, the desired v1 2 belongs to
the cluster vI 0 - v13. The completion was ensured by the far value of A14). Then the
relevant eigenvectors were updated by one or a few cycles.

The solution obtained oii level 2 was interpolated to level 3 where a cluster comple-
tion test was satisfied only by the first cluster, vI. The cluster completion algorithm
was applied to the remaining eigenvectors (using cycle robustness tests and the cluster
completion tests). This resulted in few cycles per eigenvector. The parameters 1, and
1P were found in the following way: 1) for cluster 1, (vi), the values were obtained
from previous level since this cluster was stabilized from the beginning; 2) For cluster
2 and 3 (v6 - v9 and vI 0 - v13 ) 1, and 4p were taken from level 2 values since these
clusters resulted stabilysed after the cluster completion; 3) Robustness tests were
used for cluster 4 since the eigenvalues A10 - A13 on level L=3 and the next coarse
level L=2 were not enough close. Then one cycle (here V(1,1)), was performed for
each cluster.

The level 4 cluster completion test was satisfied by the first 3 clusters, eigenvalues
v, - v9 and their parameters were taken from level 3. The cluster completion algo-
rithm was again applied to cluster 4, (vIO - v13 ), a few cycles being sufficient, then
the parameters were taken the corresponding level 3 ones since the cluster resulted
stabilysed. One cycle was performed for each cluster.

The level 5 cluster completion test was satisfied by all relevant eigenvectors (vi -
v1 3). One cycle (V(1,1)), was performed for each cluster. The 1, and 1. for the separate
clusters, in the final cycles, on levels 3, 4, 5 were found as: for vl: IC = 1p = 1, for
the other clusters, containing v2,... , v13 c= IP = 2 were obtained, ( a test for the
asymptotic convergence rate, for cluster v10 - v13 may lead to l = 1P = 3, but such a
test was not used in this run).

The additional last eigenvector obtained in the cluster completion test, used just
to ensure that the previous cluster was complete, was not needed and not used in
further steps. Usually its convergence was poor since the algorithm didn't separate
it from the next eigenvectors in its cluster e.g. on level 2, to separate A14 from the
next 7 eigenvectors with close eigenvalues.

Observe that a second order approximation and a good convergence rate of order
O(10-2) for the first cycle are obtained. A simultaneous cycle for all clusters with
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separation on the coarsest common level for all clusters (here level 2 ) would improve
the efficiency of first cycle but was not needed. (This also would improve the scalar
products which resulted of order 10' after first FMG cycle, in this case, accurate
orthogonality being obtained by the algorithm described next).

Observe that this algorithm is of order O(qN) if one does not use fine level sep-
aration inside the clusters. The adaptive coarse level work on levels 1, 2, took ap-
proximately 1/6 of the computer time and on levels 1, 2, 3, approximately 1/4 of the
computer time. This is a fixed time and it would contribute only with 1/16 if level 6
would be employed too.

Table 1
I -FMG-V(1,1), 2-D, 16-EV, 5-Lev

_____________ Residuals at Start and End of ML Cycles_______
E level 1 __ level 2 level 3 level 4 level 5
1 .48E+2 .37E-13- .69E+O .97E-13- .22E+0 .3oE-12 .60E-1 .6497-04 .15&1 .14 04T
2 .53E+2 .44F-13- .30E+2 .14E-12 _.11E+2 .35E-12 .30E+l .86E-03 .76E+0 .73E-04
3 .61 E+2 .38E-13 .30E+2 .80E-13 .11E+2 .29E-12 .30E+l .86E-03 .76E+0 .73E-04
4 .66E+2 .68E-13 .30E+2 .17E-12 II1E+2 .30E,12 .30E+1 .54E-02 .76E+o .I1E-02
S .55E+2 .39F,13 .30E+2 .24E,12 .11E+2 .45E-i2 .30E+i .54E-02 .76E+o .IE-02
6 .52E+2 .12E-12 .11E+3 .32E-12 .16 +2 .35 12 .44SE+1 -.42E-02 11-7+-1 82F-03
7 .59E+2 .31E-12 .45E+2 .54E-11 .16E+2 .32E-12 .44E+i .42E-02 il1E+i .82E.-03
8 .61E+2 .20E-12 .45E+2 .57E-11 .16E+2 .41E-12 .44E+l .39E,02 .IIE+I .93E-03
9 .62E+2 .17E-12 .45E+2 .71E-11 .16E+2 M3E-12 .44E+l .16E-02 IlIE+I .93E-03

10 .73E+2 .13E-12 .45E+2 .152-0 .12E+3 .30E-0 .43E+2 .72E,0 .12E+2 .33E-02
11 .58E+2 .34E,-12 .11E+3 .41 E-09 .1 2E+3 .16F,09 .43E+2 .20E-08 .12E+2 .33E,02
12 .54E+2 .39E,12 .1 2E+3 .81E-11 .12E+3 .26E-09 .43E+2 .21 E-05 .12E+2 .29E-01
13 .51E+2 .70E-12 .1 2E+3 *50E-04 .12E+3 .50E-09 .43E+2 .16E-05 .12E+2 .29E..01
14 .44E+2 .96E-12 r12E-+3 .19F-05 .E+3 .171!-06 .4 4EL+-2 7_34- M0 2
15 .53E+2 .16E-12 .12E+3 .55E+01

L16 .6-9E+-219E-06 _______ _____________________

Table 2
1 -FMG-V(1,1), 2-D, 16-EV, 5-LEV

Eigenvalues at End of ML Cycles ________

E* level I level 2 level 3 level 4 level 5
1 .496347395806E+1 .4957213891 76E+l .4955521341 SOE+l .495509317773E~ .495498173425E+l
2 .860204208719r,+2 .9992133424697+-2 .103677004418E+ .104634633842E+ .10487469S012E+
3 .860204208719E+2 .999213342469E+2 .103677004418E+3 .104634633842E+3 .104874695012E+3
4 .860569469139E+2 .9995 E+2 .10371 E+3 .1046 E+3 .10491 E+3
5 .860569469139E+2 .99998 E+2 .10375 E+3 .1047 E+3 .10495 E+3
6 .1670 E+3 .194919376-1 R1E+-3 -.202435153808E+3 .204351759395E+3 .204831900326E+3
7 .16711 3893828E+3 .194919376181 E+3 .2024351 53808E+3 .204351 758395E+3 .204831 900326E+3
8 .167113893828E+3 .1 94962161804E+3 .202479632146E+3 .204395 E+3 .204876918643E+3
9 .167113893828E+3 .194962161804E+3 .202479632146E+3 .204396 E+3 .204876918643E+3

10 .16711389.3828E+3 .3291850015479+-3 .384812002762E+ .399841022256E4 .403673103803E+3
11 .16715 E+3 .329185001547E+3 .384812002762E+3 .399841022256E+3 .403673103808E+3
12 .2481 70840742E+3 .329227787655E+3 .3848590736 E+3 .399888846 E+3 .403720980600E+3
13 .248170840742E+3 .329227787656E+3 .38485907-39 E+3 .399888846 E+3 .403720980600E+3
14 .248207366784E+3 .424191908011E+ .483580557031E+3 .49956780E+
15 .248207366784E+3 .424295844705E+3
16 .329264313697E+3_________________ _________ ________
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Example II: Fine level Separation
In the next example the potential V(x, y) = 5 + 3sin(lOx) + 2co.s(10y) causes

a further spliting of the eigenvalues. The clusters were treated sequencially and the
projection for each cluster was performed on the finest level to provide accurate finest
level separation inside clusters. The results, for 9 eigenvectors, are presented in Tables
3 and 4. A 10-FMG-V(1,1) algorithm was used to show the constant convergence rate
per cycle. The coarsest relaxation level for clusters 2 and 3 was level 2 and for the
first eigenvector was level 1. On levels 1 and 2 the adaptive algorithm and few cycles
were used. All eigenvectors came out accurately orthogonal (10-13 scalar products
on level 4).

This shows that it is enough to perform separation only within clusters.

Table 3
10 -FMG-V(1,1), 2-D, 9-EV, 4-Lev

Residuals at Start and End of ML Cycles
Evect. level 1 level 2 level 3 level 4

1 0.48E+02 0.14E-13 0.83E+00 0.12E-12 0.27E+00 0.1IE-11 O.72E-01 0.41E-11
2 0.46E+02 0.83E-09 0.30E+02 0.48E-09 0.11E+02 0.42E-12 0.30E+01 0.21E-11
3 0.52E+02 0.29E-09 0.30E+02 O.12E-08 0.11E+02 0.75E-12 0.30E+01 0.52E-11
4 0.56E+02 0.56E-10 0.30E+02 0.73E-09 0.11E+02 0.93E-12 0.30E+01 0.56E-11
5 0.54E+02 0.85E-09 0.30E+02 0.55E-08 0.i1E+02 0.17E-If 0.30E+01 O.12E-1o
6 0.53E+02 0.57F-02 0.11E+03 0.40E-05 0.16E+02 0.61E-12 0.44E+01 0.16E-10
7 0.53E+02 0.68E-11 0.45E+02 0.57E-05 0.16E+02 O.IOE-II 0.44E+01 0.39E-1o
8 0.41E+02 0.13F-1o 0.45E+02 0.29E-05 0.16E+02 0.82E-12 0.44E+01 0.33E-10
9 0.43E+02 0.80E-02 0.11E+03 0.14E-05 0.16E+02 0.83E-12 0.44E+01 0.48E-10

Table 4
10 -FMG-V(1,1), 2-D, 9-EV, 4-LEV
Eigenvalues at End of ML Cycles

E level I level 2 level 3 level 4
I -0.494698319454E+01 -0.493789518604E+•1 -0.493543833853E+01 -0.493481214576E+-01
2 -0.860202443918E+02 -0.9991E+02 -0.10367E+03 -0.10463E+03
3 -0.860202443918E+02 -0.999361 E+02 -0.1036931E+03 -0.104650E+03
4 -0.860406326305E+02 -0.999362E+02 -0.1036937E+03 -0.104651E+03
5 -0.860406326305E+02 -0.9997E+02 -0.1037E+03 -0.10469E+03
6 -0.1670E+03 -0.19491E+03 -0.20243E+03 -0.20434E+03
7 -0.167113893828E+03 -0.19493E+03 -0.20245+03 -0.20436E+03
8 -0.167113893828E+03 -0.19495E+03 -0.20247E+03 -0.20439E+03
9 -0.16713E+03 -0.19497E+03 -0.20249E+03 -0.2044E+03

Example III: Coarse Level Separation, 2D and 3D
In the next two runs (Tables 5, 6) we show that a coarsest level separation (lc =

11 = 1), even for clusters containing very close and degenerate eigenvalues, can be
enough to provide accurate finest level separation. In the degenerate clusters the
eigenvectors were not orthogonalized on finest levels but resulted so from the FMG,
where orthogonality was imposed on the coarsest level solution (in the FMG, not
during the cycles). This implies an O(qN) algorithm even for close clustered cases.

Table 5 shows results for a problem in 2-D with a potential V(z,y) = 2 +
0.1sin(10t + 10y), which produces a splitting of the first cluster of four eigenval-
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ues into two degenerate clusters whose eigenvalues are close to within 10'. A second
order approximation was obtained by an 1-FMG-V(1,1) algorithm and the asymp-
totic convergence rate per fine level cycle was 1/10. Observe the 13 eqtaal digits of the
degenerate eigenvalues, onl all levels. On level 5, 8 cycles were performed to show the
constant convergence rate per cycle, (see cycles 3 and 8 where the convergence rate
is accurately 1/10). The eigenvectors came out accurately orthogonal, even in the
degenerate eigenspaces, although the projection was performed only on the coarsest
level, (the eigenvector's scalar products being of order 10-13 on level 5).

The same efficiency is obtained for problems in 3-D as can be seen in Table 6.
The potential V(x, y, z) = 2 + sin(2Ozr + 10y - 10z) determines a cluster of six close
eigenvalues grouped into two clusters of two and four equal eigenvalues (with 13
digits). Observe the 1/ 10 convergence rate in cycle 3 and the first 6 common di gits
of the eigenvalues in the cluster.

These examples indicate that the reduction of complexity of the newly developed
algorithm from O(q 2 N) to O(qN) is quite general and also works for rather difficult
cases.

Table 5
1 -FMC-V(1,1), 2-D, 5-EV, S-LEV

cycle vector first res I at res eigenvalue
____ LEVEL4 _______

I I 0.18F-02 0.13E-03 -0.19M9752449715E+01
2 0.30E+01 0.43E,02 -0.10162979203934E+03
3 0.30E+01 0.43E-02 -0.10162979203934E+03
4 0.30E+01 0.43E-02 -0.10172931 140738]z+03
5 0.30E+01 0.43E-02 -0.10172931140738E+03

_____ L E V YEL 5 _________

1 I 0.46F-03 0.6F0 -0.199997500263889T+01
2 0.76E+00 0.40E-03 -O.10186970728937E+03
3 0.76E+00 0.4013-03 -0.10186970728937E+03
4 0.76E+00 0.40E-03 -0.1019697'0729590E+03
5 0.76E+00 0.40E-03 -0.10196970729590E+03

3 1 0.3597-05 -0-3-39 06 -0.19M9749801202E+01
2 0.27E-04 0.26E,05 -0.101869'70049930E+03
3 0.27F-04 0.26E-05 -0.10186970049930)E+03
4 0.27E-04 0.26E,05 -0-10196970049780E+03
5 0.27F,04 0.26E-05 -0.10196970049780E+03

8 1 0.97& 11 0.26E-10 -0.19999749799142E+01
2 0.29E-09 0.31E-10 -0.10186970048459E+03
3 0.29E-09 0.31&-10 -0.10186970049459E+03
4 0.29E-09 0.31F-10 -0-1019697004&302E+03
5 0.29F,09 0.31E-I10 -0.10196970048=0E+03
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Table 6
I -FMG-V 1,1 , 3-D, 7-EV, 3.LEV,

cycl 1 vector I rst res Ft we. e eagenva•u•
_I____- LEVEL3

3 1 o.15E-02 o.1oE-03 -o.19991341655960E+o1
2 0.25E-01 02-0 2 -0.10072012662990E+03
3 0.25E-01 0.25E-02 -0.10072012662990E+]03
4 0.23E-01 0.21E-02 -0.10072068269198E+03
5 0.23E-01 0.21E-02 -0.10072068269198E+03
6 0.23E-01 0.21E-02 -0.10072068269198E+03
7 0.23E-01 0.21E-02 -0.10072068269198E+03

5 Conclusions

A robust and efficient ML algorithm to compute a few eigenvectors and the corre-
sponding eigenvalues for large scale eigenvalue problems has been developed. The
algorithm's robustness results from the adaptive completion and treatment of clus-
ters, the simultaneous treatment of solutions in each cluster, and from tests which
monitor the algorithm's convergence and efficiency. The algorithm treats central dif-
ficulties such as: the poor solution representation, on coarse levels, the existence of
clustered eigenvalues, the approximation of incomplete clusters, and the mixing of
approximated eigenvectors during the solution process. Its eigenvector separation ef-
ficiency stems from a new ML projection technique which is a generalization of the
Rayleigh Ritz projection, combined with backrotations.

In the cases when the algorithm properly separates the eigenvectors on coarse
levels, the algorithm's complexity is of O(qN) for q eigenvectors of size N on the
finest level. The numerical tests showed that an accurate fine level separation was
obtained by the coarse level projection, even for problems with very close or equal
eigenvalues.

The results of the numerical tests for Schr~dinger eigenvalue problems, show that
the algorithm achieved the same accuracy, using the same amount of work (per eigen-
vector), as the Poisson multigrid solver. A second order approximation is obtained
using the 5-point in 2-D and 7-point in 3-D discretized Laplaceian, by l-FMG-V(1,1)
in O(qN) work. This means that the work was of order a few (2-4) fine level re-
laxations per eigenvector. The adaptive work was only part of the fine level work
and enhanced the fine level cycle efficiency. Constant convergence rate per cycle was
obtained for the presented cases. The robustness of the algorithm has been demon-
strated on problems with eigenvalue distribution that present special difficulties.
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